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I. INTRODUCTION 

The phenomenon of the solubility of certain metals in 

their molten salts is one of the most interesting areas of 

investigation in fused salt chemistry. Many systems have now 

been at least partially examined including those of the 

alkali, alkaline earth, transition, inner-transition, and 

post-transition metals. Recent reviews have been written by 

Ukshe and Bukun (1), Delimarskii and Markov (2), and, more 

critically, by Corbett (3). 

In a typical system there is a depression of the melting 

point of the salt upon addition of the metal which terminates 

at an invarient, monotectic (or eutectic) point with the solu­

tion, solid salt and a liquid (or solid) metal-rich phase in 

equilibrium. Beyond the monotectic the concentration of the 

metal in the molten salt usually increases with temperature; 

this increase may be slight or It may be large enough to allow 

a consolute temperature above which the liquid salt and liquid 

metal are miscible in all proportions. One feature of these 

solutions is that they are apparently specific for the salt of 

the same metal; i.e. mixed metal-salt systems either show no 

measureable reactions or they involve oxidation-reduction reac­

tions . 

For simple salt-metal solutions there is an absence of 

any intermediate salt phase. Attempts to isolate new com­

pounds, even by rapid quenching of the melts, yield just 
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finely-divided mixtures of the initial salt and metal. How­

ever, there are several systems which do involve separation 

of solid subsalts. These subsalts usually undergo peritectic 

or syntectic disproportionation at higher temperatures to the 

metal rich phase and to the normal salt rich melt. Above this 

peritectic (or syntectic) temperature the salt-metal phase 

relationship resembles that found in the simple salt-metal 

systems. 

There are then two main points of interest in many of 

these studies. The first is to determine the nature of the 

solute in the molten solution, azid the second is to determine 

if solid subhalides exist. Composition versus temperature 

phase diagram studies help clarify both points. They show the 

extent of the apparent solubility and, by their form, suggest 

conditions for other experiments in the molten, state. Also 

they are particularly useful in showing the existence or non­

existence of lower halides; several previously unknown sub­

halides have been discovered by these studies. 

Different theories have been advanced to explain the 

solubility of the metal in the molten salt. Corbett (3) 

covers these quite extensively so this discussion will not 

be exhaustive. It is quite possible that no single, simple 

theory can fit the many varied systems. For example, the 

solubilities range from 3e ss than 1 mole % metal (SbClg-Sb, 

Allg-Al, MgClg-Mg, PbCLp-Pb, Pblg-Pb) to complete miscibility 
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between molten salt and liquid metal at the salts melting 

point (CsX-Cs systems, RbBr-Rb). In the letter systems then 

there must be complete gradation from salt-like to metallic 

behavior. Also, the behavior of the alkali metal systems, for 

instance, would very likely be expected to be quite different 

from the transition or post-transition metal systems. It is 

in fact, quite interesting to see the differences and simi­

larities between these different groups. 

At present, the two main theories are that the metal 

dissolves by formation of a lower oxidation state of the salt, 

i.e. a subhalide, or by formation of the solvent cation plus 

electrons. An early theory by Lorenz (4, 5) that the melts 

were actually colloidal suspensions hss been generally dis­

proved. 

The subhalide theory has been returned to good favor in 

recent years. In the nineteenth century it was abused by in­

vestigators claiming many subhalides which did not actually 

exist. In their defense it must be noted that they did not 

have adequate means to differentiate between compounds and 

finely divided mixtures of solid salt and metal, nor did they 

have our present, more complete knowledge regarding trends in 

oxidation states. Unfortunately even some modern investi­

gators have made unsupported claims of unusual subhalldes. 

The current subhalide theory was put on a firm basis by work 

done on the post-transition metals (6, 7, 8, 9). The extent 
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of the metal solubility within a group of the post-transition 

elements increases with increasing atomic number of the metal; 

this is in agreement wjth the known trend toward increased 

stability of the lower oxidation state in these groups. Also, 

the solubility of a given metal is observed to increase with 

atomic number of the halide for all halide systems known 

except for cadmium and the alkali metals. In terms of a 

reaction of the type . + K( s l) = ^soln.' this can be 

explained by a shift in the equilibrium toward the reduced 

state with the heavier halldes due to a decrease in the extent 

+ 2 
the more acidic M ion interacts with the halide ion. The 

inverse order for cadmium is in agreement with the known order 

of stability of its halide complexes in aqueous solutions. 

Addition of basic salts such as KCl should shift the equi-

+• 2 
llbrium toward M because of the interaction of the chloride 

ion with the more acidic ion. This is in agreement with 

the known facts for the solubility of Pb In PbCl (10) on 

addition of KCl, and for Cd in CdClr, on addition of KCl, 

CaClr,, kgClg, ZnClg, MnClg, and CeClg ( 11) . Corbett pointed 

out that addition of a strong Lewis acid such as an aluminum 

If, * 

trlhaxide should increase the amount of reduction since the 

halide ion would associate with the AlXg rather than with the 

ion thus shifting the equilibrium toward M+. With 

CdXgîAIX3 equal to 1:2 the limiting compositions correspond 

to 67, 57, and 31^2 reduction of the Cd+^ to Cdg^ compared to 
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15.9, 16.4, and 21.6# in the respective chloride, bromide, 

+2 
and iodide systems (9). Furthermore, the Cdg ion was con­

firmed in the melt by Raman spectrum (12), and the solid salt 

CdgfAlCl^jg was obtained. Actually the preparation of GaAlCl4 

and the analogous Ga(GaCl^) led to the cadmium results (13). 

The "theory" that the metal goes into solution as ions 

plus electrons is conceived differently by different workers 

in the field. In 1952 Cubicciotti (11) proposed a model in 

which the anions were taken to be essentially close-packed so 

that the cations of the salt, and of any dissolved metal, 

occupied octahedral holes in the anion structure. Valence 

electrons of the dissolved metal were described as being 

transferred to "bands or zones of energy states belonging to 

the salt system as a whole." The nature of the electron zones 

or bands was not further defined; in certain later papers the 

assumption of solution as metal atoms was implied (14, 15, 16, 

17). Available information on variations in solubility with 

size of divalent cations, with charge type of the chlorides, 

and from the effect of added salts on Cd in CdClg was cited 

in defense of the model. Numerous facts have been arrayed 

against this specific model (3) and it simply does not hold 

up as a general theory. 

However, a somewhat vague concept of solubility as ion 

plus electrons has been used to explain the solubilities and 

appreciable electronic conductivities observed in the alkali 
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halide melts and in certain of the rare earth metal halide 

melts (18, 19, 20, 21). Variations between systems was 

attributed to stability of various electron "traps" such as 

+ 2 
Nag molecules or Gag molecule ions but the nature of the un-

trapped electrons was unclear except that they were conduct­

ing and cryoscopically active. 

An alternate model is to consider the electrons as 

trapped or bound in anion vacancies ; this is analogous to the 

solid state behavior of n-type semiconductors and of color 

centers in halides of the more electropositive metals. Pitzer 

(22) considers the formation of such solutions "may be con­

sidered in two steps: first, the conversion of the metal to a 

hypothetical ionic lattice of positive ions and F-centers, end 

second, the mixing with the metal halide." He shows that the 

positive energy of mixing for these systems can be accounted 

for reasonably well by the excess energy of this hypothetical 

metal. He points out that a critical factor for metallic vs. 

non-metallic character is the overlap of the wave functions 

between the F-center cavities. Intermediate states are un­

stable at low temperatures and one finds the continuous 

transition from non-metallic to metallic character only above 

a critical mixing temperature. For the metal hallde-metal 

systems the non-metal to metal transitional composition may 

be taken to be that of the critical point for phase separa­

tion . This is of the order of 50 mole % metal whereas it is 
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only 4.2# metal In solutions of sodium in liquid ammonia. 

Apparently the electronic wave functions are much more 

localized in the fused salts than in ammonia. Others envision 

a similar picture for these systems (l, 2-3) . 

Corbett (3) compares this with the subhalide theory, 

which is at least better documented in certain systems, and 

shows that In some cases "the difference between a solvated 

electron and a reduced ion may be largely semantic and merely 

amount to a subtle difference in degree of electron localiza­

tion." Bredig (24) comments that in mentioning "cryoscopically 

active11 electrons he had in mind a 

. . . more or less strong interaction with the 
cations which may be represented by e(Mz+)x, where 
z is a number essentially unknown at present, pos­
sibly varying from 1 (e.g. in hypothetical Ca+) to 
perhaps 6 (F-center-like entities). 

Thus the theory is in a state of flux and will undoubtedly see 

new developments in the near future. 

Finally, brief mention should be made of a proposed con­

duction mechanism by Rice (25) that in those systems which 

display electronic conduction the electronic contribution can 

be considered to arise from the random walk character of a 

resonant charge transfer between metal atom solutes and the 

cations of the salt. So far the main argument against this 

proposal Is its assumption of the metal atom solutes. It 

will be interesting to see how this conduction mechanism 

model fits in with the F-center end subhalide structural 
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models. 

It Is apparent that the battle of solution theories will 

rage for some time. Certainly the subhalide theory is based 

on the firmest ground for certain systems, but to extend it 

to others will require considerable sophistication in its 

description. Both the F-center and random walk models will 

undoubtedly be enlarged in scope, and either or both may 

attain wide acceptance. 

The investigation of metal halide-metal systems has 

recently been extended to the rare earth metals. Phase 

diagram and other studies of the lighter rare earth systems 

have shown interesting trends in certain characteristics of 

these solutions but, perhaps more importantly, have shown the 

existence of several new lower halides. Here "lower halide" 

is used to describe any rare earth metal halide whose halide: 

metal mole ratio is less than 3:1. These lower halldes are 

all stable with respect to disproportionation in the solid 

state, except for PrClg 3 which is stable as a solid only from 

ca. 594° to its incongruent melting point at 859° (26). The 

known lower halldes are listed in Table 1; included are the 

previously known dlhalldes of samarium, europium, and ytter­

bium and the recently discovered Tmlg (27, 28). A more com­

plete tabulation of the major features of the MXg-M systems 

for lanthanum, cerium, praseodymium, and neodymium is given 

in Table 2» 
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Table 1. Lower halldes of the rare earth metals 

La Ce Pr Nd Pm 3m Eu 

Lal2.4 
Lalg 

Gd Tb Dy Ho Er Tm Yb Lu 
YbFg 
YbClp 
YbBrg 

Tmlg Yblg 

disproportionates at 594° on cooling. 

The dllodldes of lanthanum, cerium, and praseodymium 

have been shown to be metallic-like rather than true Ionic 

dllodldes (29, 30). Magnetic susceptibility and electrical 

resistivities indicate that the metal is not present as 

ions but is still in the +3 oxidation state with an equal 

number of electrons in essentially metallic bonding with the 

cations, i.e. M+^e""(I~)g. Their lustrous colors are also sug­

gestive of a metallic nature, essentially black with a purple 

luster for Lalg, dark bronze with a bluish luster for Celg, 

and a golden bronze for Prig. Other properties of Lalg, Celg, 

and Prig also distinguish them from the normal, divalent 

halldes. Their higher melting points, relative to their trl-

lodides, are in contrast to the lower melting neodymium and 

SmFo EuFo 
„ NdOlg.37 * 

PrClo % NdClo go 
KdClp SmClp EuClp 

PrBrg.4 
SmBrg EuBro 

Celp 4 Prig 5 
Celg Prig Ndlx.95 Smlg Eulg 
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Table £• Major features of the KX.3-M systems for the lighter lanthanides9 

Iii kG lg I'll 3 
m.p. Eutectlc Max. solubility^ Compounds 
.3 hi3 Temp. Comp. % Temp. Comp. % in.p- Comp. % Liquid Reference 

La 860° 826 9 990 11 none 31 
778-9 754 8.2 900 33.3 750 19.2+0.8 14.2 29 

, )  
(3,?!§-42 830 33.3 33.3 29 

Ce 812 777 9 950 9.7 none 32 
760-1 715 8.8 880 31 731 19.2+0.8 16.1 29 

(Celg %) 
808 33.3 30.3 29 

(Celg.oo) 

Pr 786 646 17.1 780 18.7 659 24a 18.7 26 
(PrCl2.3) 

738 666 11.9 676 16.7 16.7 29 
(Prig.50) 

669 20.9 764 28.2 758 33.3 28.2 29 
(prl2.00) 

^Composition as mole % metal K in kX^, +0.3 unless otherwise noted. 

^Largest experimentally determined solubility. 

^Composition of liquid salt phase in equilibrium at m.p. 

^•Disproportionates at ca. 594° on cooling. 
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Table £• (Continued) 

.p • Eutec tic Max. solubility Compounds 
M kCl^ MIg Temp. Comp. % Temv. Comp. % m.p. Comp. % Liquid % Reference 

Kd 758 640 13.8 870 30.5 680 21.0+0.7 17.5 33,34 
(NdClg.gv) 

33,34 702 24.3+0.7 20.0 33,34 
(MGlg.g?) 

841 33.3 30.3 33,34 
(KdClg) 

787 491 26.6 800 36.5 562 35.0 35.0 33,34 
(Nd.Il.95) 
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samarium dllodldes. Also, contrary to normal trends of in­

creasing stability of the dichlorides with increasing atomic 

number of lighter lanthanides, the metallic dllodldes decrease 

in stability from lanthanum to praseodymium, as Judged from 

the degree of decomposition on fusion and their melting points. 

Similar metallic-like behavior has been noted for the rare 

earth monosulfides (35) and acetylides (36) except for the 

normal divalent compounds of europium, ytterbium, and samarium. 

+ 2 
Neodymium diiodide is evidently ionic with Kd ions but 

its stoichiometry of NdI1<Q5 and its insulating character 

indicate an apparent reduction below the +2 state (34). The 

dllodldes of samarium, europium, thulium, and ytterbium are 

apparently stoichiometric and ionic. However, reduction below 

the +2 state Is Indicated for samarium In the iodide melt 

(34). The extent of reduction in the iodide melts Is not 

known for europium, thulium, and ytterbium; thulium may also 

be reduced below +2 but this would not be expected for europium 

and ytterbium. 

The intermediate iodides Lalg.4, Celg.4, and Prig.5 have 

not been investigated enough to say if they are Ionic or 

metallic-like but they would be expected to be metallic like 

the dllodldes. Measurements on PrBrg.4 give gross resistances 

in the semiconductor range indicating at least some electronic 

conductance (37). 

The lower chlorides are evidently #11 ionic. As noted 
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above, their stability increases with the atomic number of the 

lighter lanthanides as evidenced by the non-existence of lower 

chlorides for lanthanum and cerium, the stability of solid 

PrClg.g only over a small elevated temperature range, and 

finally the existence of lower chlorides of neodymium, samar­

ium, and europium. 

In conjunction with the discussion of stability of the 

solid halides it is interesting to note the limiting solubil­

ity of the metals in the molten salts (see Table 2). With 

the chlorides the metal solubility increases regularly from 

lanthanum to samarium but with the iodides it decreases from 

lanthanum to praseodymium and then increases to samarium. 

Besides phase diagram studies, there have been EMF and 

conductivity measurements made on certain of the molten 

systems in an effort to determine the nature of the solute 

species. Actually the only EMF work was that done on the 

CeClg-Ce system (38) and that was shown to be unreliable due 

to container attack (39). Conductivity measurements were made 

on the chlorides and iodides of lanthanum, cerium, praseo­

dymium, and neodymium (20, 21, 40, 41). For both the chlorides 

and iodides considerable electronic conduction was found in 

the lanthanum and cerium systems. Praseodymium shows less 

electronic conduction while neodymium shows essentially ionic 

conduction. The question immediately arises as to the nature 

of the solute species and in what manner the electrons become 
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conducting. To date this has not been resolved. However, 

Corbett (3) pointed out that the electrons are not all mobile, 

as the positive temperature coefficient of the specific con­

ductivity indicates that they are activated from some unknown 

solute specie(s). Whether these solute species are those 

described by the F-center or subhalide theories remains to 

be proven. 

It is of interest to determine the trends in solubility 

and in solid lower halide formation for the heavy rare earth 

metals end for the rare earth metals yttrium and scandium. 

For this reason the following investigation was made of the 

GdCl3-Gd, Gdlg-Gd, and Ylg-Y systems. 
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II. EXPERIMENTAL 

A. Preparation of the Anhydrous Trihalides 

The gadolinium and yttrium metals used for the prepara­

tion of the trihalides were readily available in the Ames 

Laboratory in a high state of purity. Typical impurity 

analyses showed 300 ppm oxygen, 130 ppm carbon, 200 ppm 

nitrogen and fluorine, ̂0.1% metallic impurities, principally 

as calcium, magnesium, tantalum and other rare earth metals. 

The trihalides were prepared by the method developed by 

Druding (34) in which the metal was reacted directly with the 

halogen or hydrogen halide. This was considered to be super­

ior to other procedures in avoiding the problem of oxygen 

contamination. Even so, it was necessary to vacuum sublime 

the products for ultimate purity. Varying amounts of non­

volatile residue remained after the sublimations and the 

product trihalides were always cleaner in appearance. The 

purity of the trihalides were reflected in the melting points 

determined by thermal analysis, specifically by cooling curves. 

Twice-sublimed YI^ melted at 997° compared to 989° for the 

unsublimed material and 965° recently given in the literature 

(42). Sublimed GdClg melted at 605° compared to 603° for the 

unsublimed material and 602° for the literature value (43). 

Sublimed Gdlg melted at 931°, the literature value is 925° 

(43). Typical major component analyses on sublimed salts 
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have halide:metal ratios of 3.00+0.01:1 with 100.00+0.15$ 

material balance. Typical impurity analyses showed 500 ppm 

oxygen, trace quantities of aluminum, silicon, calcium and 

magnesium, with other rare earth metals, tungsten, tantalum, 

and molybedum not detected. 

All materials were stored in evacuated sample containers 

due to the hygroscopic nature of the trihalides and the re­

active nature of the metals and, especially, the subhalides. 

All transfers were carried out in an argon-filled "dry" box. 

The argon was dried by passage through a -80° trap, and the 

box atmosphere continuously circulated through mixed Linde 

Molecular Sieves Types 4A and 13X. 

1. Preparation of gadolinium trichloride 

Gadolinium metal was placed in a molybdenum boat Inside 

a fused silica tube which was then placed in a 12", nlchrome-

wound , split furnace and connected to the gas train. Incoming 

gases were dried by passing them through a sulfuric acid 

bubbler and a -80° trap. Helium and a little hydrogen were 

passed through the tube while it was being heated to reaction 

temperature (850°). When the temperature reached 850° the 

helium and hydrogen flow was stopped and HC1 was passed 

through at a moderate rate until the reaction was completed. 

One to three hours later completion of the reaction was indi­

cated by the appearance of white fumes of molybdenum chloride. 
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Hydrogen was then added at about one-half the HC1 rate and 

the apparatus maintained at temperature another half hour. 

Helium was passed through the apparatus during the cooling 

period. The crude product was transferred to a tantalum 

crucible which was connected to a tantalum collector tube 

inside a larger tantalum tube. The entire assembly was placed 

in an evacuable fused silica tube and the trichloride was sub­

limed under vacuum at 850°. The final product was almost 

white with a slight yellow or green tint. 

Since hydrocarbons found in commercial HCl are difficult 

to remove and react preferentially with the rare earth metals, 

the HCl was usually generated as required by dropping conc. 

H2SO4 on KCl. However, commercial HCl was used for one 

preparation and indeed it was necessary to sublime the crude 

product twice before it compared favorably in all respects to 

once-sublimed GdClg made from generated HCl. 

£• Preparation of gadolinium trliodlde and 
yttrium trllodlde 

For the preparation of the triiodldes of gadolinium and 

yttrium the metal was loaded into a tungsten crucible inside 

a large fused silica tube. The previously vacuum sublimed 

iodine (B&A Reagent Grade) was contained in a sldearm con­

nected to the main tube• The section of the apparatus con­

taining the metal was heated to a temperature 10-20° above 

the melting point of the trliodlde while the arm containing 
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the iodine was heated to 110° to maintain the iodine pressure 

at one-tenth of an atmosphere. Twelve hours were usually 

allowed for complete reaction. 

The crude product was sublimed by the same technique as 

used for gadolinium trichloride. The final gadolinium trl­

iodlde was very light grey with a slight green tint. The 

yttrium iodide was almost white with a slight yellowish tint. 

B. Analytical Methods 

1. Dissolution of samples 

Samples for analysis were transferred in the dry box to 

a weighing bottle and this was weighed in air. After trans­

fer of the sample, the weighing bottle was again weighed in 

air and the necessary buoyancy correction applied. The tri­

halides were dissolved in water but with all reduced mixtures 

or subhalldes sufficient acetic acid was added to dissolve 

the hydrolysis products. An acid solution was not added 

directly to reduced samples because of their extremely reac­

tive nature. With the iodides a small amount of sodium sul­

fite was added to reduce any iodine to iodide. 

2. hetal determination 

The metal was titrated with EDTA using arsenazo indicator 

at pH 5.5-6.5 (44). 
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3. Chloride determination 

The chloride was precipitated with silver nitrate, dried, 

and weighed as silver chloride. 

4. Iodide determination 

Iodide was determined by titration with standard silver 

nitrate using Eosin Y as the indicator. 

5. Oxygen determination 

Oxygen was determined by the Analytical Service Group 

by the inert gas fusion method (45). 

6. X-ray powder pattern determination 

Samples for X-ray powder patterns were loaded in the dry 

box into 0-1-0.3 mm. Pyrex capillaries and sealed off. Dif­

fraction patterns were obtained using Kl-filtered, Cu K c< 

radiation in an 11.46 cm. Debye-Scherrer camera. The camera 

was calibrated with sodium chloride, and no corrections were 

applied for adsorption. Values of Ô were converted to dis­

tances using the NBS tables (46)• The trihalide patterns 

were visually identical with those determined by Dennison.* 

The patterns of df-Gdlg and GdCl^.g are listed in the 

*D. H. Dennison, Ames Lab. U. S. Atomic Energy Commis­
sion, Ames, Iowa, "X-ray Powder Patterns of Rare Earth Metal 
Trihalides", private communication (1961). 
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Appendix. 

7. Experimental accuracy 

The results of the analyses were considered reliable if 

the material balance totaled 100.0+0.3/2. In the results to 

be quoted, the values of mole % metal are +0.3# and the 

halide:metal ratios are +0.01 unless otherwise noted. 

0. Measurements 

1. Determination of the phase diagrams 

The phase diagrams were determined by thermal analysis 

and equilibrations. These were supported by the analytical 

tools of chemical analyses and X-ray powder patterns. 

a. Thermal analysis The sample containing apparatus 

for thermal analysis was essentially that used by Druding 

(34). A three section apparatus was used so that successive 

metal additions could be made. The bottom section was con­

structed of 29 mm. x 14" fused silica with a vacuum jacket of 

41 mm. fused silica on the lower two-thirds. A well evacuated 

jacket was essential for steady cooling rates at the lower 

temperatures ( ~ 680°) encountered in the GdClg-Gd system. A 

platinum foil radiation shield was placed around the outside 

of the vacuum shield; this was necessary to maintain uniform 

cooling rates at the higher temperatures (~ 1100°) encountered 

in the iodide systems. The middle segment of the apparatus 



www.manaraa.com

21 

consisted of a Pyrex "el", while the Pyrex top had a stopcock 

and two tungsten-through-glass seals for the thermocouple 

leads. The "el" was necessary to avoid thermal gradients 

across the tungsten leads. When the sample temperature was 

being recorded it was essential to shield the tungsten leads 

by surrounding that portion of the apparatus with metal foil 

and grounding the foil. If no shield was used the temperature 

recording varied from slightly unsteady to violently spas­

modic . A small blower was used to cool the connecting taper 

joints and the stopcock. The sample was contained in a tan­

talum crucible, 3/411 i.d. x 2", with a thermocouple well of 

5/32" tantalum tubing positioned in the center and crimped so 

that the tip of the thermocouple was 1/4 to 1/2" above the 

bottom of the crucible. The bottom portion of the #28 gage 

chromel-alumel thermocouple was encased in an alundum shield 

while the top end was equipped with small clips to facilitate 

easy replacement. A tantalum lid was placed on the crucible 

and three or four tantalum baffles were fastened to the 

alundum thermocouple insulator at one inch intervals to min­

imize convection currents and decrease heat loss by radiation. 

The vacuum-jacketed portion of the apparatus was posi­

tioned in a Marshall tube furnace. The furnace was lined with 

a piece of 1/811 thick Inconel pipe which was grounded. The 

grounded pipe served to steady the temperature recording and 

to lower the power-off cooling rate of the furnace. The 



www.manaraa.com

22 

cooling rate of the furnace could be controlled between 

^l°/min. to its maximum cooling rate with power off, 5°/min. 

at 600° and 10°/min. at 900°. Temperature was regulated by 

a V; est on Celectray controller or Minneapolis-Honeywell Brown 

Electronik Indicating Proportioning Controller with the con­

troller thermocouple In contact with the inside wall of the 

furnace. 

A differential thermal recording was obtained simul­

taneously with the sample temperature recording. The refer­

ence thermocouple was in contact with AlgOg sealed in a fused 

silica container which was permanently positioned in the 

furnace just below the sample. The sample thermocouple poten­

tial and differential potential were simultaneously recorded 

on a Bristol Model 560 Dynamaster strip chart, two-pen 

recorder. This recorder Is equipped with a variable, 2-10 

millivolt scale with a 0-40 millivolt zero suppression for 

the temperature pen and fixed 0-2 millivolt range for the 

differential pen. A Rubicon potentiometer was subsequently 

used to measure the recorded thermal arrests. Positioning 

of the differential pen was controlled by a variable DC 

voltage source which in effect acted as a zero suppression. 

The sample thermocouple was standardized regularly against 

the melting points of Ag (960.8°), NeCl (800°), and NaT 

(660.1°). The KaCl and Nal values are those given by Bredlg 

and Bronstein (47). The thermocouple was replaced if it did 
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not indicate melting points within one degree of these values. 

No provision was made for agitating the sample during cooling 

other than by shaking the entire apparatus by hand. 

The procedure followed in a run was to load 25—35 ml111-

moles of salt and the desired amount of metal in the dry box 

and evacuate the apparatus by mercury diffusion pump for about 

one hour. One-half atmosphere of argon was then introduced 

to keep sublimation of the trihalides to a minimum. The 

sample was equilibrated for 15 mins. ca. 20° above the melting 

point of the trihalide and then the furnace was cooled at a 

uniform rate. During the cooling the sample temperature and 

the difference between the sample and reference temperatures 

were continuously recorded. Thermal halts were observed when­

ever some event in the sample would affect the cooling rate 

of the sample due to the heat evolved in the event. Typically, 

halts were observed for 11quidus, peritectic, eutectlc, and 

phase transformations. Thermal halts were reproducible to 

within 1° on a given sample and, unless otherwise noted, all 

temperatures reported are +1°• 

The thermal halts obtained were quite varied In nature. 

Melting points and eutectics showed good plateaus on the 

temperature (T) curve that quickly fell off beyond the break 

and returned to the normal cooling rste. This was accompanied 

by a huge hump on the differential (Aï) curve. The only 

severe supercooling was observed with GdClg (16°). The 
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liquidas halts were seen only as changes in slope on the T 

curve with a more dramatic displacement on the A T curve. 

The AT curve might or might not return to its equilibrium 

position depending on how soon the next halt appeared but, in 

either event, the separate halts were usually easily iden­

tified. The peritectic halt in the Gdlg-Gd system was more 

pronounced than a liquidus halt but less than a eutectic halt. 

In the G-dClg-Gd system the peritectic halt was very small; 

the differential curve was particularly helpful here in estab­

lishing in early runs that there indeed was a peritectic halt. 

Halts due to phase transformations in the pure compounds were 

well pronounced but, of course, were smaller in mixtures. 

For a melting point or eutectic the actual temperature 

assigned to the halt was the temperature of the plateau on the 

T curve. For a liquidus, peritectic, or phase transformation 

the assigned temperature was taken from the initial slope 

change on the T curve; the larger and more abrupt AT slope 

change occurred at the same time and helped with the tempera­

ture assignment. Relatively slow cooling rates (2-3°/min.) 

were necessary to make this slope change abrupt and not 

rounded. 

b. Equilibrations Equilibrations of the salts with 

metal were carried out in the apparatus shown in Fig. 1. The 

salt and metal were loaded into a 1/4" tantalum tube In the 

dry box. Best results were obtained using metal in massive 
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Fig. 1. Apparatus for equilibrations and quenches 
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chunks or buttons since metal turnings disintegrated during 

the reaction and the fine metal chips were difficult to sep­

arate from the salt phase after the reaction. The tube was 

crimped tightly and then suspended by a tantalum wire in the 

equilibration apparatus. The tantalum wire was in two sep­

arate lengths connected by an alumina link to prevent hest 

loss by heat conduction. The sample was positioned so it was 

in good contact with the thermocouple. The apparatus was con­

tinuously evacuated throughout the equilibration. A 12" 

ni chrome-wound furnace was used to heat the middle (fused 

silica) section with the sample to the desired temperature. 

The top and bottom Pyrex portions of the apparatus projected 

out of the furnace and were cooled by small blowers. The 

sample was quenched by rotating the suspension hook so that 

the sample tube fell into the silicone diffusion pump oil. 

Necessary equilibration times varied considerably. For 

the limiting liquidus concentrations consistent results were 

obtained for samples equilibrated -30-60 minutes for the iodides 

and 1-2 hours for the chloride system. However, to produce 

the lower iodide and chloride of gadolinium the trihallde end 

excess metal were reacted for 5-20 days between the eutectic 

and peritectic temperatures. In fact the lower chloride was 

never obtained by equilibration at constant temperature. The 

lowest chloride : gadolinium ratio reached by this technique 

was 2.04:1, subsequently found to be only ca. 70/8 reduced. 
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Best results in enriching and isolating the lower chlor­

ide were achieved by application of a temperature gradient. 

Two methods were used. In the first method sufficient salt 

and metal were loaded into a 5" length of 1/4" tantalum tubing 

to fill the tube to ca. 3" after the salt was melted. The 

tube was placed in a 5/3id11 i.d. evacuable fused silica con­

tainer. A thermocouple was in direct contact with the sample 

tube. Two small 3/8" i.d. furnaces were positioned so most 

of the sample was held at ca. 650° but the top part of the 

sample was held at 600°. The sample was then raised 1/4" 

three times a day for four days. The second method was 

developed by Sallach (30) for growing peritectic-type lower 

halides. The sample was slowly lowered from a hotter zone 

into a colder zone of an adapted Marshall furnace. The fur­

nace had a temperature profile which resulted in a uniform 

temperature gradient within the sample of ca. 14°/inch. 

The product yield was very low but the lower chloride 

crystals were much larger than any grown previously and they 

were easily separated from the bulk salt by hand sorting in 

the dry box. 

2. Resistance measurements 

Crude gross resistance measurements were made on the 

solid samples in the dry box using a vacuum tube voltmeter. 



www.manaraa.com

28 

3. Magnetic susceptibility measurements 

Exploratory magnetic susceptibility measurements were 

made on samples of composition GdI2.11 sud GdCl1>6 by members 

of the physics group under the direction of Dr. Sam Legvold. 
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III. EXPERIMENTAL RESULTS AND PERTINENT DISCUSSION 

In the phase diagrams to be cited the circles, crosses, 

and triangles represent data obtained by equilibrations, cool­

ing curves, and heating curves respectively. 

A. Gadolinium (III) Chloride-Gadolinium System 

There are two main items of interest in this simple look­

ing phase diagram. The first item is the low solubility of 

metal in the molten trichloride. The eutectic composition is 

1.0 + 0.5/o Gd in GdCl^; the limit of solubility is 5.0,-2 at 

950°, 3.2$ at 800°, and 2.0% at 670° by equilibration. This 

is the lowest metal solubility reported for any rare earth 

metal-trihalide system reported so far, even for systems where 

no solid lower halides exist. 

The second and more exciting item of Interest is the 

existence of a solid compound of apparent stoichiometry near 

GdCl-^g. This stoichiometry below a more conventional di-

chloride is well documented. Trichloride and metal were care­

fully equilibrated below the peritectic temperature at 632°; 

those samples whose salt phases subsequently analyzed near 

33 mole > Gd in GdClg (i.e. ca. GdClg) still exhibited a. large 

eutectic halt when cooled from the equilibration temperature. 

In addition, powder patterns of these solids showed the 

presence of appreciable amounts of GdCl^; in fact the char­

acteristic trichloride lines were still of major intensity as 
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shown for the composition GdClg.n in Fig. 3. More reduced 

solid samples of compositions GdCl-j^81+0.03 ^^l. 68+0.03 

were later isolated and their patterns still showed the 

presence of GdClg. Finally, a sample of composition 

GdG1l.61+0.03 showed no powder pattern evidence of GdClg. 

Efforts were first made to obtain the lower chloride by 

reacting trichloride and excess metal between the peritectic 

and eutectic temperatures for 10-20 days, depending on the 

quantity of sample. Best reaction rates occurred at ca. 602°, 

as low as possible without the entire system being solid. The 

lowest composition attained by this constant temperature 

method was GdClg^ but thermal analysis and powder patterns 

showed that there was still considerable trichloride present. 

Finally the best lower chloride samples were grown by means 

of the temperature gradient methods mentioned in the experi­

mental section. Single crystals of the lower chloride up to 

1/4" in length could be sorted from the bulk salt mixture; 

varying small amounts of bulk salt would sometimes cling to 

the crystals making the sorting difficult. The samples of 

compositions GdCl^g-^, G-dClli6g, and GdCl^.g! resulted from 

this technique. 

The assignment of composition GdOl-L<59+0.05 *or tiie l°wer 

chloride was made by the following reasoning. In the powder 

patterns the relative intensity of the strongest lower chlor­

ide line compared to the strongest trichloride line is 0.1 at 
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OdOlg.ae* 1 at m011.98-2.06' 821,1 10 ̂  &dCl].,g].. At G&Cll.61 

all trichloride lines are gone. Evidently the effective 

scattering power of the hkl plane(s) giving the strongest 

trichloride line is of the order of twice that for the 

strongest lower chloride line. Based on a pessimistic 10% 

lower limit of detection for equal scattering powers, the 

presence of ca. §% trichloride in the lower chloride could 

probably be detected. Since trichloride was not detected at 

composition GdCl^g^, the lower limit would then be GdCli.54* 

Now in the powder pattern for GdCli.68 seven probable tri­

chloride lines are present. The hkl plane(s) represented by 

the weakest of these seven lines probably has about the same 

scattering power as the plane(s) represented by the strongest 

lower chloride line. Based on an optimistic "5% limit of 

detection for such a case, the weakest trichloride line would 

not be seen unless there were at least ca. 5% trichloride 

present in the GdCl^ @g sample. This would set the upper 

composition limit at GdCl^.^ and establish the assigned com­

position at GdCl1#59+0.05* *n this argument it is assumed that 

the absorption of X-rays by different mixtures of the chlor­

ides should be similar since the linear absorption coefficient 

is not dependent on the chemical composition but only on the 

elements in the mixtures. The limits +0.05 are the probable 

limits ; by assuming a liberal +0.03 analytical error the max­

imum limits of composition would be +0.08. The analytical 
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error is large for the chloride because of the small amount 

of sample available at compositions GdGli,gi, GdCl^.gg, and 

GdC11.61' 

The symmetry of GdCl^g, as determined from the X-ray 

powder patterns, is orthorhombic, with lattice constants 8.99, 

7.22, and 6.72 %. The solid is isolated as brassy or brown 

crystals but when ground up it becomes a black fibrous mate­

rial. The GdCl-^g is weakly attracted to a magnet; however, 

magnetic susceptibility measurements show only that it is 

paramagnetic. Resistance measurements on single crystals 

1/8 to 1/4" in length using a vacuum tube volt meter gave 

7 
resistances of ca. 1 x 10 ohms. 

The best value of the incongruent melting point for 

GdCl1#g is 632° by cooling curves. This value is highly 

dependent on the cooling rate, the slowest rate giving the 

highest results. No phase transitions were observed down to 

135*. 

B. Gadolinium (III) Iodide-Gadolinium System 

In this phase diagram the existence of a stable solid 

lower halide of apparent stoichiometry near Gdlg is probably 

most noteworthy. Efforts to obtain a relatively pure di-

iodide were partially frustrated by the closenss of the 

peritectic temperature at 831° to the eutectic temperature at 

825°. Despite extreme precautions the equilibrating samples 
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would evidently temperature cycle above the peritectic temper­

ature causing any diiodide which had been formed to dispropor­

tionate to finely divided metal and melt. Finally the compo­

sition Gdlg 2.1 was reached by equilibrating trliodlde and 

excess metal 5° to 10° below the apparent eutectic temperature 

at 825°. Strangely, the eutectic halt was then observed at 

temperatures as low as 808° upon cooling from the equilibra­

tion temperature. With continued equilibration this tempera­

ture halt gradually got smaller and finally practically 

disappeared while the diiodide transition halt at 670° grew 

larger. 

The assignment of composition Gdlg.04+0.04 for the lower 

iodide was made as follows. The powder patterns showed no 

diiodide lines for compositions down to Gdlg#g4; then the 

strongest diiodide and trliodlde lines were of equal intensity 

near composition Gdlg gg; and, finally, at Gdlg.n the trl­

iodlde lines were almost gone. A plot of I3/I2 versus I"/Gd 

for the stronger lines roughly indicated that trliodlde lines 

probably would not be detected at about Gdlg^Qg. Hence the 

effective scattering powers of the hkl planes represented by 

the strongest trliodlde lines are probably almost twice that 

of the khl planes represented by the strongest diiodide lines. 

Again based on a pessimistic 10% lower limit of detection for 

equal scattering powers, the presence of 5-6% trliodlde in the 

lower iodide could probably be detected. Therefore if no 
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trliodlde is detectable at Gdlg.gg the lower limit of composi­

tion would be Gdlg.oo" Then based on an optimistic 3% limit 

of detection for the weakest of the trliodlde lines detected 

in Gdlg the upper limit of composition would be Gdl£.08' 

With the +0.01 analytical limits the maximum limits for the 

assigned composition are +0.05. 

Qualitative supporting evidence is the fact that the 

eutectic halt was first seen on cooling curves at Gdlg.gg, or 

at 19% of the eutectic composition; at Gdlg ̂  the eutectic 

halt was practically gone, so if ca. 19% of the eutectic com­

position were present the lower iodide would be ca. Gdlg . Q j .  

The diiodide is a bright brassy material which is 

strongly attracted to a magnet. The preliminary magnetic 

measurements show that there is some magnetic orientation but 

probably not strong enough to Indicate ferromagnetlsm. Re­

sistance measurements did not clearly differentiate between 

metallic or non-metallic character. Some polycrystalllne 

pieces ca. 1/4" in diameter of different samples of composi­

tions from Gdlg.Q to Gdlg.3 would typically show gross 

resistances as low as 30 ohms between certain points but as 

high as 105 ohms between other points. Since they were highly 

segregated samples, with the brassy diiodide scattered 

throughout the bulk grey salt, the low value may be a reason­

able value for the diiodide. The most reduced sample of 

Gdlg.11 composition gave a relatively uniform resistance of 



www.manaraa.com

38 

1-3 x 104 ohms between all points contacted on a piece 3/4" 

In diameter. Since the resistance is well less than would 

be expected for an insulator It confirms at least some degree 

of electronic conduction. Two factors could contribute to a 

higher resistance than expected for a truly metallic diiodide. 

First, the contact resistance could be appreciable as with 

the light rare earth metal dilodides (29, 48). Second, the 

Gdlg ̂  sample was very homogeneous in appearance so the 

ca. 11% trliodlde uniformly distributed through the sample 

could cause the high resistance. The Gdlg has hexagonal 

symmetry with lattice constants a@ = 8.67 and c0 = 5.75 i. 

The Gdlg melts at 931° and exhibits a halt at 740° which 

is evidently due to a previously unreported phase transition. 

Efforts to quench in this /3 -phase failed. 

There Is a portion of the diagram which remains unex­

plained. This Is the halt, or halts, In the 840°-850° region 

to the left of the eutectic. With a given sample at least one 

halt and often two halts were observed in this region; they 

were not large but were about the same size as liquidus halts. 

If the halt (or halts) was due to the formation of a peri-

tec tic- type compound, then samples of composition to the left 

of the compound when equilibrated between the eutectic (825°) 

and peritectic (840°-850°) temperatures should not show a 

eutectic halt on cooling. Also, either the powder patterns 

should show the presence of a new compound or a disproportion-
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ation halt should be observed. However, no powder pattern 

evidence was found for a new compound; no dlaproportlonation 

halt was observed; and, except for compositions where the 

eutectic halt was very small, the eutectic halt could not be 

"equilibrated away". Similarly, compositions to the right of 

the compound when equilibrated below the peritectic tempera­

ture should not show the trliodlde•transformation halt at 

740° on cooling; if the 740° halt is observed then a dispro-

portionation halt should be seen somewhere between 740° and 

840°. In fact the 740° halt was always observed and no dis-

proportion&tion halt appeared. The possibility remains that 

the 850° halt is a peritectic halt due to formation of an 

intermediate phase which then disproportionstes at 840°. 

Attempts to isolate such a phase by quench experiments failed. 

A final possibility is that the halt (or halts) is due to an 

induced transformation in the trliodlde. However, samples 

with 1 and 2 mole % metal in the trliodlde failed to exhibit 

either halt. 

Finally, in phase diagrams of this type the possible 

solute species can sometimes be inferred by calculating the 

cryoscopic number from the slope of the liquidus curve and 

the known /IH^g ̂ - Alternately the -<^Hfus.(MXg) can be 

calculated if the solute specie is known. In the Gdlg-G-d 

system a tentative value of n = 2.1+ 0.1 can be calculated 

if a ,(Gdlg) value of ca. 12 kcal./mole is used. This 
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is based on a speculative extrapolation of limited ^Sfug _ 

data for Lalg, Cel^, Prig, and Edl^.* The most reasonable 

solute species Gd+^ and Gd+'^ + 3e~ both have n = 3, if the 

electrons are cryoscopically active. Other possible solutes 

are Gd+ with n = 1.5 and Gd° with n = 1. Then n = 2-1 indi­

cates a mixture of solute species or the formation of solid 

solutions. However, no other evidence of solid solutions 

was found. 

0. Yttrium (III) Iodide-Yttrium System 

The most notable feature of this system is the lack of 

a solid lower phase, in contrast to Lslg-La. Equilibrations 

of metal and triiodide at temperatures just above that of 

the eutectic at 948° confirm the results of cooling curves 

that indeed there is no lower iodide. Nevertheless there is 

considerable solubility of the metal in the molten triiodide. 

The eutectic composition was 11.6 mole % Y at 948°, and the 

limit of solubility was 14.7% at 1150° and 12.1% at 965° by 

equilibration. 

A phase transformation, previously unreported, was de­

tected in the Ylg at 978°, which is above the previously 

reported YIg melting point (42). The halt was well pro-

*A. S. Dworkin and M. A. Bredig, Oak Ridge National 
Laboratory, Oak Ridge, Tenn., "Entropy of Fusion Data for 
Certain Lanthanide Halides," private communication (1962)• 
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nounced on both the T and AT curves on cooling curves of two 

separate samples. Samples equilibrated between 978° and 997° 

end then quenched were <X-YIg, so the e* transition must 

be relatively rapid. 

By using n = 3, n = 2, and n = 1.5 the ^%us. ( YI3) can 

be estimated as 31.9, £1.5, or 15.8 kcal./mole respectively. 

Thert. is no experimental or estimated ^Hfug _ (Ylg) to compare 

with these values but certainly the 31.9 kcal./mole for 

n = 3 would not be expected. 
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IV. GENERAL DISCUSSION OF RESULTS 

A. Discussion of the Formation of Lower Halides 

The formation of a solid dihalide can be expressed by the 

reaction 

^3(liq. soin.) + %(s) = ^2(s) . 

The heat of this reaction based on a Born-Haber cycle is 

AE = 3U() - 2(U(ixXg) +AHfus. (MX3) * +<6Hsub. (M) 

+• (Ij + I2 — Ig) — RT 

for a truly reduced dihalide. For a metallic dihalide 

AH = 3U ̂ i+3e-(X-)^j ~ ^U(MX3) + ^fus.lMXg) ̂ 

+ AHsub.(k) + ^1 + IE + I3^ " RT ' 

Salt-like dihslides are favored by high ), ^HfUs.(MX3) > 

and I3 and by low U(%x3), AHgub<(M), 1^, and Ig. Metallic 

dihaliaes are favored in the same way except that I3 should 

be small rather than large. The largest quantities, end thus 

probably the most important, are the lattice energies and the 

ionization potentials (e.g. theoretical for ^dCl3 has been 

estimated as -1053 kcal./mole and the estimated sum 

Il + Irc + I3 + ^Hsub. (M) for Gd is 987 kcal./mole (48), 

while the AKy^ _ for Gd is 72 kcal./mole (43) end the esti­

mated s for GdCl3 is 7 kcal./mole (50)). 

kost of these quantities are unknown for the rare earth 

metals. The second and third ionization potentials are 
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especially hard to determine. The-heat of vaporization of the 

metal and the three ionization potentials are however known 

for yttrium (43, 51). Since 1^, Ig, and Ig are all low their 

effect would be to favor a metallic diiodide rather than a 

salt-like diiodide although neither is actually formed. The 

heat of vaporization for yttrium metal is high but not as high 

as for lanthanum and cerium (43), which both form metallic 

diiodides. Unfortunately, however, nothing is known about 

the lattice energies of the yttrium triiodide or hypothetical 

diiodide. If the metallic diiodide lattice energy is highly 

dependent on some critical cation/anion radius ratio it may 

well be that the heavier (and smaller) lanthanides may not 

form metallic diiodides either. 

For gadolinium only the heat of vaporization of the 

metal (43) and the first ionization potential (51) are known. 

The sum of 1^, Ig, I3, and ^Bub. (8d) haa been estimated 

(49). Therefore little can be said about the diiodide except 

that it exists and seems to be metallic. A careful deter­

mination of its magnetic moment would be the most direct way 

to determine the gadolinium oxidation state. 

The existence of solid GdCl^ g can only be described as 

surprising at this stage of our knowledge. The gross resist­

ance measurements indicate that it is a truly reduced halide 

and not a metallic halide. A careful determination of the 

magnetic susceptibility will help determine the actual oxlda-
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tion state(s). If it is an ionic, reduced halide then it 

shatters the tradition of the high stability of the f7 con­

figuration (e.g. for Gd+3) being the only consideration for 

probable oxidation states for lanthanides near gadolinium. 

Here there are obviously other overriding thermodynamic fac­

tors . The overworked statement commonly used that certain 

ions are stable just because they are approaching the f7 

configuration should certainly be discarded. 

The three big questions are what stabilizes the GdCl^ g, 

why the unusual stoichiometry, and why is there such small 

solubility of the metal in the molten salt? The existence of 

the solid lower chloride and low solubility of metal in the 

melt would seem to be mutually contradictory. Evidently the 

GdCl-^g lattice energy is very high and of a special nature 

not possible in the liquid. Speculation regarding the nature 

of the forces contributing to this high lattice energy must 

await further experimental information. The low concentra-
"t* xp 

tion of Gd or Gd in the molten chloride could be related 

to a high AH^g,(GdOl^ g)> e*g* the location of the eutectic 

near GdOlg could indicate that the inherent, hypothetical 

melting point for GdCl-^g should be much higher than that of 

the trichloride. 

The free energy of the reaction 

.53GdCl3(D + l47Gd(s) = GdC11.6(s) 

was calculated from the liquid composition at the peritectic 
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temperature at 632° to be only -4Z cal., assuming unit activ­

ities for the solids and an ideal solution. 

B. Proposals for Future Research 

The magnetic moments of the Gdlg and particularly the 

GdClj q should be determined to aid in the assignment of 

oxidation states. A single crystal X-ray study may be the 

best way to resolve oxidation state assignments, molecular 

weight, and reasons for the stability of the GdCl-^#g. 

The nature of the magnetic coupling in the Gdlg may be 

of interest to those working with magnetic phenomena but it 

is not of immediate interest to the study of metal halide-

metal systems. 

The nature of the unexplained thermal halts in the 

Gdlg-Gd phase diagram might be revealed by a high temperature• 

X-ray investigation. This technique could also be used to 

determine the high temperature forms of Gdlg, Gdlg, and YIg. 

Electrical conductivities of the melts would be helpful 

to indicate the mode(s) of solution. Eventually the solution 

theories must explain this conductivity with regard to both 

structure and mechanism. The Gdlg-Gd melt would be expected 

to be similar to the electron conducting Lalg-La and Oelg-Ce 

melts, and it would be interesting to know the extent of elec­

tronic conduction in the Ylg-Y melt. The low metal solubility 

in the GdClg-Gd system would make it a poor system to study 
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by this means. 

Phase diagrams of the halides of the remaining rare earth 

metals should be determined. Certainly not enough is known 

yet to predict what they will look like. The trend for the 

solubility of the light rare earth metals in their molten 

chlorides would indicate that the solubility of the metal 

should increase from gadolinium to lutetium. The small solu­

bility of gadolinium in its molten trichloride indicates that 

this solution behavior may go as predicted. On the other hand 

the formation of solid lower chlorides cannot be predicted. 

Since solid GdCl^.g exists it is not impossible that other 

solid lower chlorides of unusual stoichiometry may exist. 

The estimated lattice energy for KClg increases regularly 

from LaClg through LuClg, but the same should be true for 

lower chlorides from gadolinium to lutetium unless a struc­

ture change causes a large change in the Madelung constant 

or in other ways affects the thermodynamic lattice energy. 

Similar lattice energy considerations would apply to the 

diiodides keeping in mind the differences between metallic and 

ionic diiodides. 

Finally, even the nature of the GdBr^-Gd phase diagram 

cannot be predicted except that the metal solubility in the 

melt will probably be between 2 and 14%. The possible exis­

tence and nature of a lower bromide is debatable. 
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VII. APPENDIX 

Table 3. X-ray powder diffraction data for GdCl^g 

d (obs.) d (calc.) 
& A hkl Intensity® 

Lattice constants: a^ = 8.98 i, bQ = 7.22 c0 = 6.72 & 

8.97 8.96 100 2 

7.22 7.22 010 4 

4.95 4.92 Oil 1 

-o
 

C
D

 

3.81 210 L 1 

3.74 201 

3-377 3.368 o
 
o
 

tv
>
 
2 

3.300 3.317 211 L 1 

3.128 3.150 102 LL 1 

3.043 3.047 012 L 1 

2.996 2.998 121 LL 1 

2-997 300 

2.898 2-886 112 LL 1 

2.753 2.768 310 LL 1 

2.736 301 

2.698 2.692 202 L 1 

£ .464 2.459 022 10 

2.358 2.373 122 3 

2.251 2-245 400 1 

2.242 003 

aL 1 means less than 1 and LL 1 means much less than 1. 
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Table 3. (Continued) 

d (obs.) d 

î 

(calc.) 
i h kl Intensity 

Lattice constants: 8q - 8-98 , bQ = 7.22 Cg = 6.72 i 

2-125 2.131 401 LL 1 

2.122 
o
 

to Ai 
1.983 2.005 203 1 

1.956 032 

1.89% 1.901 322 LL 1 

1.878 330 

1.799 1-805 040 1 

1.796 500 

1.716 1.711 141 L 1 

1.647 1-652 104 LL 1 

1.643 430 

1-640 033 

1.631 1.637 014 L 1 

1.570 1.573 204 LL 1 

1.567 142 

1.546 1.549 512 LL 1 

1.547 340 

1.540 233 

1.526 1.523 024 LL 1 
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Table 3. (Continued) 

d (obs.) d (calc.) 
% & hkl Intensity 

Lattice constants: aQ = 8.98 A, b0 = 7.22 . A, cQ = 6.72 

1.498 1.502 124 LL 1 

1.499 242 

1.498 600 

1.450 1.451 522 LL 1 

1.434 1.439 333 LL 1 

1.438 314 

1.433 611 

1.268 1.272 630 LL 1 

1.268 215 
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Table 4. X-ray pooq powder diffraction de ta for G-dlg 

d (obs.) d (calc.) 

2 & hkl Intensity a 

Lattice constant s : :8ÛS : aQ = 8.6? cQ = 5.75 % 

7.43 7.51 100 3 

3.759 3. 754 200 1 

2.875 2.875 002 7 

2.496 2.502 300 8 

2.285 2.283 202 2 

2.033 2.027 221 1 

1.878 1.877 400 10 

1.659 1.650 321 2 

1.577 1.588 213 1 

1.577 411 

1.380 1.378 421 4 

1.287 1.291 332 L 1 

1.282 214 

1.281 323 

1.274 1.272 422 5 

1.217 1.223 601 LL 1 

1.221 512 

aL 1 means lesasleas than 1 and LL 1 means much less than 1. 
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